

Presenting Today

Sheryl Ryan, PhD, OTR/L Akemi McNeil, MA, OTR/L Kathlyn Decena, OTS Angie Higa, OTS Cristina Jones, OTS Ellery Lockwood, OTS

Objectives

At the end of this workshop, participants will be able to

- 1. Discuss what is known about driving for teens with ADHD in the occupational therapy literature.
- Use evaluation data to draw conclusions related to ADHD, executive function, sensory processing, and driving errors.
 Apply the learning to create appropriate assessment plans and interventions
- Apply the learning to create appropriate assessment plans and interventions for teenage clients who are starting to learn to drive.

Plan

- Introduction
- Activity Analy
- What is Known about ADHD and Driving

Break

- Exploratory Case Study
- Case Study Activity
- Driving Preparedness: Handbook for OTs
- Q&A

The Occupation of Driving for Teens

It's an IADL (27)

- Freedom!
- Independence
- Building adult competencies
- Access to school, work, and community involvement
 Occupational enabler (28)

(CDRS)

- Already skilled at doing driving assessments and rehabilitation
- Mostly with older adults and acquired disabilities
- Are pediatric OTs connecting youth to CDRS ?
- ★ Who is a pediatric OT or COTA?★ Is anyone a CDRS?

Activity Analysis

Driving is a complex task with many sub-tasks, client factors, and performance skills.

Activity Analysis

What are some examples of sub-tasks for driving?

Driving Sub-Tasks

Turning the vehicle on/off

Buckling a seatbelt

Navigation

Managing speed

Attending and responding to signage Communicating with others

Activity Analysis

What functions are required for a person to safely drive a car?

Activity Analysis

A look at OTPF

- 1. Neuromuscular, Motor, and Movement Functions
- 1. Mental, Cognitive, and Sensory Functions

Activity Analysis

Neuromusculoskeletal Motor Functions

Movement Functions

Activity

Note which OTPF terms that you believe might be required functions for the activity of driving.

Neuromusculoskeletal **Muscle Functions**

- Joint mobility
- Joint stability
- Muscle Power Motor Reflexes • Muscle tone
- Involuntary movement • Muscle endurance reactions
 - Control of voluntary movement

Movement Functions

Gait patterns

Activity Areas that $\ensuremath{\mathsf{OT}}\xspace's$ should consider when addressing driving concerns Neuromusculoskeletal **Muscle Functions Movement Functions** Muscle Power

- Joint mobility Joint stability
- Muscle tone • Muscle endurance
- Motor Reflexes Involuntary movement
- reactions
 Control of voluntary movement

· Gait patterns

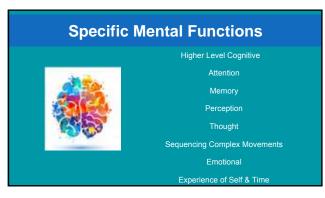
Neuromusculoskeletal

Joint Mobility Joint Stability

Muscle Functions

Muscle Power Muscle Tone Muscle Endurance

Movement Functions


Motor Reflexes Involuntary Movement Reactions Control of Voluntary Movement Gait Patterns

Activity Analysis

Specific Mental Functions Global Mental Functions Sensory Functions

	Activity	
Note which OTPF terms t	hat you believe might be re activity of driving.	equired functions for the
Specific Mental Functions	Global Mental Functions	Sensory Functions
 Higher level Cognitive Attention Memory Perception Thought 	 Consciousness Orientation Temperament & personality Energy & dripo 	 Visual Hearing Vestibular Proprioceptive Touch
 Thought Sequencing Complex movements Emotional Experience of self & time 	 Energy & drive Sleep 	 rouch Smell Pain Temperature & Pressure Taste

		Activity		
Areas that OT's shou	Id co	nsider when addressi	ng d	Iriving concerns
Specific Mental Functions	Glo	bal Mental Functions	Se	ensory Functions
• Higher level Cognitive	0	Consciousness	0	Visual
 Attention 	0	Orientation	0	Hearing
• Memory	0	Temperament &	0	Vestibular
 Perception Thought 	-	personality	0	Proprioceptive Touch
 Thought Sequencing Complex 	0	Energy & drive	0	Smell
 Sequencing Complex movements 	0	Sleep		Pain
 Emotional 				Temperature & Pressure
 Experience of self & time 			0	Taste

7

Global Mental Functions

Consciousness

Orientation

Temperament & Personality

Energy & Drive Sleep

Sensory Functions Visual Touch Vestibular Proprioception Hearing

Literature Review

Driving and its relation with:

- Teenagers
- ADHD
- Executive Functioning
- Sensory Processing

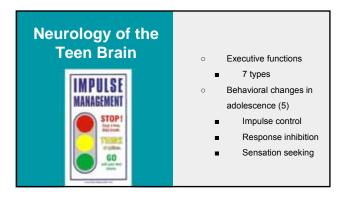
Sherrilene Classen, PhD, MPH, OTR/L, FAOTA, FGSA

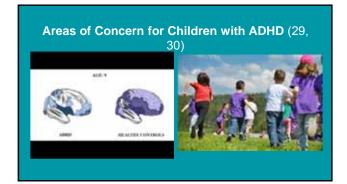
- Extensive research in driving science
- Professor in variety of OT programs
 Editor-in-Chief of Occupational
- Editor and contributing author of
- Editor and contributing author of Driving Simulation for Assessment, Intervention, and Training

Risks of Driving for (all) Teens

- Higher rates of road traffic accidents and fatalities
 - Worldwide Leading cause of death for people age 15-29 years (1)
 - USA 1/3 of all teen and young adult deaths (2)
 - Young men 15-19 years (2)
- Higher rates of traffic citations

Risks of Driving for (all) Teens


- Factors related to increased traffic accidents for all teens (6)
 - Limited experience driving
 - Risky driving behaviors
 - Impaired driving
 - Distracted driving
 - Visual texting
 - Manual eating, texting
 - Cognitive other teen passengers



Neurology of the Teen Brain

- Brain maturation (3)
 Prefrontal Cortex
- Amygdala and frontal lobe connection (4)
 - Emotions
 - Cognitive skills

ADHD and Driving - Increased Risk Factors

- 4x higher risk for accidents for teens with ADHD in North America (7)
- Less safe driving habits, greater frequency of license
- suspensions (15)
- Executive function problems correlate with more traffic
- citations and accidents (13) Impaired driving may be related to problems with the control of emotions and motor actions, rather than inattention (16)

Executive Functions and Driving

- Inhibition \rightarrow attention, ignoring distractions
- \blacksquare Decision making \rightarrow navigating turns, driver interactions
- Impulse control \rightarrow following distance, maintaining speed
- Problem solving → hazard management, construction zone

Executive Function and Driving

Traffic accidents or citations for speeding, reckless driving, collisions, etc. (17, 19)

- Low planningLow inhibition (19, not 17)
- *Speeding is associated with low inhibition specifically

Traffic citations, not resulting in accident (17)

Executive Function and Driving

Lane maintenance problems (19)

- Low response inhibitionLow verbal working memoryLow attention

ung adults with inefficient EF are at risk for driv ocesses (vs. automatic) are prominent during t

Sensory Processing The way the nervous system receives messages from the senses and turns them into responses

- Sensory Systems
- <u>Sensory Processing Disorder (SPD)</u> neurological "traffic jam" that prevents certain parts of the brain from receiving information needed to interpret sensory information correctly (26)

ADHD and Sensory Processing

- Children with ADHD have more sensory processing differences on all scales of the Sensory Processing Measure (SPM) than neurotypical peers. (21)
- Children with ADHD have lower scores for all four response patterns on the Sensory Profile (SP) than neurotypical peers. (22, 24)

ADHD and Sensory Processing

★ There does not appear to be a specific pattern of sensory processing and modulating for children with ADHD, however, there are clear sensory differences in ADHD. (24)

ADHD and Sensory Processing

Risky behaviors are related to higher sensory seeking and lower effortful control

- Having ADHD and sensory seeking patterns did not correlate with risky driving habits (23)
- Having ADHD and lower effortful control correlated with risky driving habits (23)

Summary

- Driving is an important occupation for teens
- Teens are at a greater risk in general
- Teens with ADHD have amplified risk for traffic accidents and citations
- OTs can provide skilled assessments and interventions that include
 - executive function, sensory processing, and motor concerns

Implications for Practice: Multi-modal assessment and intervention (9)

- Education
- Parent involvement
- Consider CDRS
- Simulator practice with instrumentation to record driving behaviors
- Additional on-road driving practice
 - Practice, practice, practice to increase automaticit
- Medication while driving (10)
- Consider a manual transmission (25)

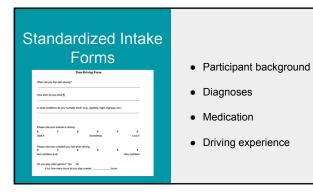
15 minute break

Plan

- Introduction
- Activity Analy
- What is Known about ADHD and Drivin

Break

- Exploratory Case Study
- Case Study Activity
- Driving Preparedness: Handbook for OTs
- Q&A



Research Question

What is the relationship between driving errors, executive function, and sensory processing for teens with ADHD?

STISIM Drive

- 5 trials
- Varying scenarios
- Driving errors
- High ecological validity (31,
 - 32)

Adolescent/Adult Sensory Profile

- Participant self-questionnaire
- 5 point Likert scale
- Norm referenced
- 4 quadrants
- Good reliability & validity (33)

Comprehensive Executive Function Inventory (CEFI)

• 9 domains

- Strengths / weakness
- Norm-referenced data
- Excellent reliability & validity (34)

Activity - Case Studies

- 4 Stations
- Visit each station
- Discuss
- Interpret the
 assessment results

ADHD and Sensory Processing

There is a known connection between ADHD and sensory processing differences, but no clear pattern

- Two participants with low registration and sensory sensitivity
- Zero participants with sensory seeking
- One participant similar to others in all all

Sensory Processing and Driving

The two participants who reported very low registration and sensory sensitivity also had more center line crossings and speeding

Quadrant	#1	#2	#3	#4
Low registration	Similar to most people	Similar to most people	Much more than most people	Much more than most people
Sensation seeking	Similar to most	Less than most	Similar to most	Similar to most
Sensory sensitivity	Similar to most	Similar to most	More than most	More than most
Sensation avoiding	Similar to most	Less than most	Similar to most	More than most

ADHD and Executive Function

There is a known connection between ADHD and executive function difficulties, but no defined pattern

- Participants had overall low Executive Functioning, especially
 Working Memory, Planning, and Attention
- Participants had significant variability on other CEFI subscale

ADHD and Executive Function

CEFI subtest scores <24 standard score:

All 4 participants

• Attention, working memory, planning

3 of 4 participants

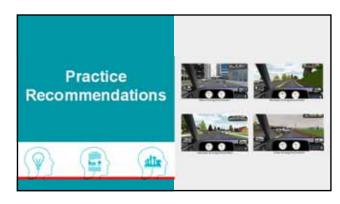
- Emotional regulation, initiation, organization, self-monitoring
- 2 of 4 participants
- Flexibility, inhibitory control

Executive Function and Driving

There is a known connection between executive function difficulties and driving errors

- Our results did not show specific connections between executive function skills and types of errors
- The two participants with overall CEFI scores <9 (standard score):
 - #2 had the fewest simulator errors
 - #3 had the most simulator errors

ADHD and Driving


All participants increased driving accuracy with successive simulator practices

- One participant increased speeding errors with practice
- It is consistent with existing literature to recommend extensive practice and repetition to develop automaticity and safe driving habits

ADHD and Driving

It may be difficult to predict an adolescent's driving readiness based on AASP or CEFI scores

- Complete a full individualized assessmentConsult or refer to a CDRS

Practice Recommendations

Pediatric OTs and CDRS

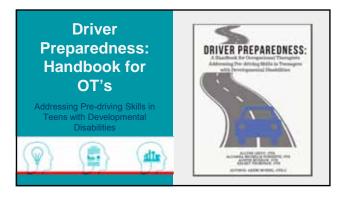
jc^iZ6

Practice Recommendations

Develop skills in executive function assessment and intervention

Practice Recommendations

Make sensory screening part of a pre-driving assessment for teens with ADHD


Practice Recommendations

Creatively expand OT services for youth 11-17 years

In Practice: ADHD and Driving Interventions Multi-modal assessment and intervention (9)

- Education
- Parent involvem
- Refer to a CDRS
- Simulator practice with instrumentation to record driving behaviors
- Additional on-road driving practice
 Practice, practice, practice to increase automatici
- Medication while driving (10)
- Consider a manual transmission (25)

Driver Preparedness Handbook: Purpose

GO-TO Introductory Resource Ideas and Information Support for Therapists

Driver Preparedness Handbook: Overview

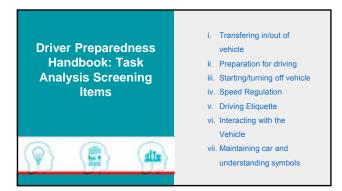
Introduction

Task Analysis

Screening Tools and Assessments

Intervention Suggestions

resources

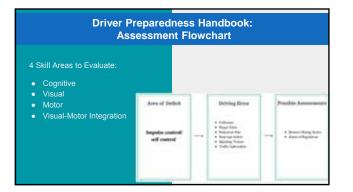

Driver Preparedness Handbook: Task Analysis

Common areas of concern

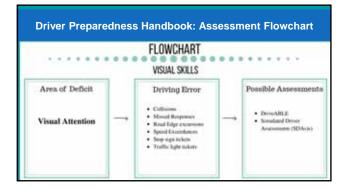
Client Factors

Performance Areas

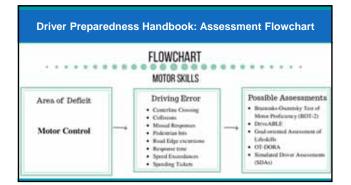
Oriving Skills	Performance Skills needed for Driving	Clinical Observations
andcoring in and out of the vehicle	Algen Bensh Coordnates Initiates Moves Positions Seguritors Subless	 Is the client simily moving from one surface to the rate? Will the altern know how to adjust the set settings to customize to their meeds?

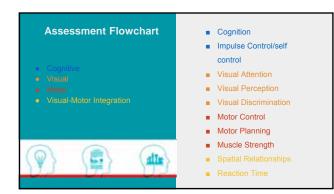


Driver Preparedness Handbook: Screening Tools and Assessments


Cognitive	skills
-----------	--------

- Visual Skills
- Motor Skills
- Visual-Motor Skills
- Driving Specific Assessments





Driver Preparedness Handbook: Interventions & Resources

- Driving Simulators
 On-Road Interventions
 Common OT strategies
- found in the clinic Scooter activities Turn taking games Visual-Motor tasks

- CDRS
 Vocational Rehab Grant
 DMV
 Finding a Specialist
 AAA
 Togo Driving B
- Teen Driving Programs

30

Driver Preparedness Handbook: Availability?

Coming soon! Currently in Review Process

Would you like to provide feedback? Grab a flyer to help out!

References

- ww.who.int/violence_injury_prevention/road_safety_status/2015/en/
- letrieved from https://webappa.cdc.gov/sasweb/ncipc/leadcaus10_us.html
- neuroscience research in adolescent health policy. Journal of Adolescent Health, 45(3), 216-221. doi:
- Cunningham, M. G., Bhattacharyya, S., & Benes, F. M. (2002). Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. Journal of Comparative Neurology,
- Johnson et al., 2009; Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience *Biobabagianal Pauline*, 24(4), 417-462
- Classen, S., Monahan, M. (2017). Simulated driving performance of teens with developmental disorders. In S. Classen (Ed.), Driving simulation for assessment, intervention, and training: A guide for occupational therapy and health care

References

- ome, L., Segal, A., &, Habinski, L. (2006). What we know about ADHD and driving risk: A literature review, meta-is and critique. *Journal of the Canadian Academy of Child and Adolescent Psychiatry*, 15(3), 105–125. 1007/s00787-008-0506-y6

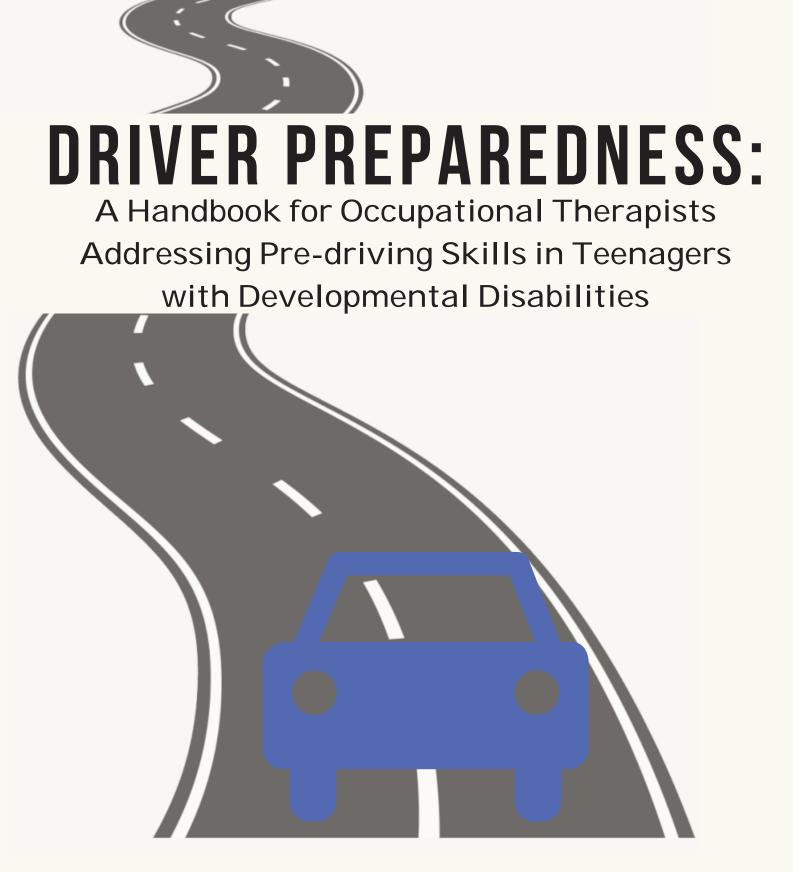
References

Barkley, R., Murphy, K., Dupaul, G., & Bush, T. (2002). Driving in young adults with attention deficit hyperactivity disorder: Knowledge, performance, adverse outcomes, and the role of executive functioning. *Journal of the International Neuroscychaptical Science*, 97, 1 (2016).

References

- Ross, V., Jongen E., Brijs, T., Ruiter, R., Brijs, K., & Wets, G. (2015). The relation between cognitive control and risky driving in young novice drivers. *Applied Neuropsychology: Adult,* 22(1):81–72. doi: 10.1080/23278035.2013.838868

- 22. Shimizu, V. T., Bueno, O. F., & Minanda, M. C. (2014). Sensory processing abilities of children with ADHD. Brazilian Journal of Physical Therapy, 18(4), 343-352, doi: 10.1800/bjtcht2014.0033
 23. Grazinon, P. A., Reid, A., Silveo, J., Branto, A., McNammar, J. P., & Geffken, G. R. (2015), ADHD symptomatology and risk phasith, driving, and financial behaviors in collegie: The modilating role of sensation seeking and effort activation and Arthronoux Brazilian Sciences. 19(1):100-1001.


References

- Dum, W., & Bernett, D. (2002). Hatterns of Sensory Processing in Children with Alternion Delicit Hyperactivity Deorder. OT/R: Occupation, Participation and Health. 22(1), 4–15. doi: 10.1177/15344020202201010
 Cox, D., Mohan, P., & Powers, K., Merkel, R. L., Burkel, R., Moore, M., Kovachev, B. (2006). Manual transmission enhances attention and driving performance of ADHD adolescent males: pilot study. *Journal of Attention Disorders*, 10(2), pp. 212–6.
- 27. American Occupational Therapy Association. (n.d). Driving evaluations by an occupational therapist. Retrieved fro
- 28. Scaffa, M.E., & Reitz, S.M. (2014). Occupational therapy in community-based practice settings (2nd edition). Philadelphia F.A. Davis Company.
- 20 Chur I/ I Develop V/ I (4000) Alterting definitive generativity disorder and the feaded labe conductive Devic Come 20

References

- 30. National Institute of Mental Health. (2009). Brain Matures a Few Years Late in ADHD, but Follows Normal Pattern.
 Retifieed from https://www.youtube.com/suelef/htmm_com/inuer/2Xv=ht/DKFRTANULA/subtrace-mm__ine
 31. Bedard, M., Parkkan, M., Weaver, B., Riendau, J., & Dahlquist, M. (2010). Assessment of driving performance using a
 simulator protocol. Walday and Reproducibility. American Journal of Consultance Journal (2010). Assessment of driving performance using a
 simulator protocol. Walday and Reproducibility. American Journal of Consultance Journal (2010). Assessment of driving performance using a
 simulator protocol. Walday and Reproducibility. American Journal of Consultance Journal (2010). Assessment of driving performance
- Shechtman, O., Classen, S., Awadzi, K., & Mann, W. (2009). Comparison of driving errors between on-the-road and stimulated driving assessment: A validation study. *Traffic Injury Prevention*, 10. 379-385. doi: 10.1080/15389580902894
- Blown, C., Tollerson, N., Dunn, W., Comwen, R. & Fillon, D. (2001). The adult sensory prolife: Measuring patients of sensory processing. *American Journal of Occupational Therapy*, 55(1), 75-82. doi: 10.5014/ajot.55.1.75
- 34 Naglieri, J.A., & Goldstein, S. (2014). Using the Comprehensive Executive Function Inventory (CEFI) to assess executive function: From theory to application. In S. Goldstein & J. A. Naglieri (Eds.), *Handbook of executive functioning* (pp. 223-244). New York: Springer Science + Business Media.

ALLYSE LEDUC, OTS, ALYANNA MICHELLE PONIENTE, OTS AUSTIN MURROW, OTS KELSEY THOMPSON, OTS

ADVISOR: AKEMI MCNEIL, OTR/L

TABLE OF CONTENTS

Intro	duction
0	Why is Driving Important?
ο	Driving and Teens with Developmental Disabilities
ο	Role of Caregiver
Task	Analysis
ο	Implications for OT
Scree	ening Tools and Assessments
0	Pre-driving Skills
0	Driving Specific Assessments
Flow	chart of Suggested Assessments and Screening Tools
0	Cognitive
0	Visual 19
ο	Motor
ο	Visual-Motor Integration (VMI)
Interv	ventions
Other	Available Resources
0	Practitioner Training
0	Practitioner and Caregiver Resources
0	Caregiver Information
Refer	rences

TASK ANALYSIS

Driving Skills

Performance Skills needed for Driving

Clinical Observations

Staring/Turning off vehicle

- Calibrates
- Chooses
- Flows
- Grips
- Handles
- Initiates
- Manipulates
- Moves
- Paces
- Reaches
- Sequences
- Stabilizes
- Uses

• Will the client have a key or push-start?

- Will the client be able to locate the correct key?
- Will the client be able to use a functional grasp with a key (e.g., lateral prehension grip)?
- Will the client know the correct sequence of starting the car or putting it back in park (e.g., automatic, manual, pushbutton start, and key ignition)?
- Does the client have appropriate in-hand manipulation skills with small objects such as a key?
- Does the client have steady arm movements when reaching?
- Will the client be able to regulate speed in accordance to the environment and speed limit?
- Can the client use visual scanning while moving in vehicle to read speed limit signs?
- Does the client understand the vehicle's speedometer and react with appropriate ankle movements?

Speed Regulation

- Accommodates
- Attends
- Calibrates
- Coordinates
- Initiates
- Paces
- Positions
- Sequences

TASK ANALYSIS

Driving Skills

Performance Skills needed for Driving

Clinical Observations

Driving Etiquette

- Approaches/Starts
- Concludes/Disengages
- Expresses Emotion
- Gesticulate
- Heeds
- Looks
- Notices/Responds
- Regulates
- Takes Turns
- Thanks

- Does the client have fluid movement when demonstrating ankle dorsiflexion and plantar flexion?
- Will the client be able to understand and obey the rules and laws of the road?
- Will the client be able to appropriately gesticulate and communicate with other drivers?
- Does the client understand the use of gesticulations (e.g., waving a hand to let other drivers pass) related to driving?
- Does the client understand the use of the car's horn and when it is appropriate?
- Will the client know to follow emergencyservice etiquette (e.g., pulling off to the side of the road when an emergency vehicle passes by)?
- Will the client know when to use turn signals at appropriate times?

TASK ANALYSIS

Driving Skills

Performance Skills needed for Driving **Clinical Observations**

Interacting with the vehicle

settings

- Chooses
- Continues
- Coordinates
- Flows
- Grips
- Handles
- Manipulates
- Moves
- Positions
- Reaches
- Searches/Locates
- Sequences
- Stabilizes
- Uses

- Maintaining car and understanding symbols
- Adjusts
- Benefits
- Initiates
- Inquires

- Will the client be able to locate and interact with: turn signals, headlight settings, window settings, A/C settings, emergency hazards, and windshield wiper settings?
- Can the client use a functional grip with task objects (e.g., a turn dial for the A/C)?
- Can the client use stereognosis to locate appropriate task objects?
- Does the client know the function of the vehicle settings
- Will the client be able to understand dashboard symbols and their implications on the vehicle (e.g., low oil, check engine, airbag, etc.)?
- Will the client be able to understand regular maintenance of a vehicle (e.g., changing tires, changing oil, refilling gas, etc.)?

NOTE: The OT should be familiar with updated technology in vehicles and how it can benefit or hinder a novice driver.

REFERENCES

- Alvarez, L. & Classen, S. (2017). Simulated driving performance of healthy teens. In S.
 - Classen, Driving simulation for assessment, intervention, and training (pp. 145-156). Bethesda, MD: American Occupational Therapy Association, Inc.
- American Occupational Therapy Association (AOTA). (2014). Occupational therapy practic
 e framework: Domain and process (3rd ed.). American Journal of Occupational Therapy, 68(Suppl.
 1), S1-S48. https://doi.org/10.5014/ajot.2014.682006
- American Occupational Therapy Association (AOTA). (2013). Cognition, cognitive rehabilitation, and occupational performance. American Journal of Occupational Therapy, 67, S9-S31. https://doi.org/10.5014/ajot.2013.67S9
- Beck, K. H., Hartos, J. L., & Simons-Morton, B. G. (2006). Relation of parent-teen agreemen t on restrictions to teen risky driving over 9 months. American Journal of Health Behavior, 30(5), 533–543. https://doi.org/10.5993/AJHB.30.5.10
- Behind the Wheel with ADHD. (2017). ADHD Increases Driving Risk. Retrieved from https://behindthewheelwithadhd.com/the-statistics/
- Bishop, H., Boe, L., Stavrinos, D., & Mirman, J. (2018). Driving among adolescents with autism spectrum disorder and attention-deficit hyperactivity disorder. Safety, 4(3). https://doi.org/10.3390/safety4030040
- Brooks, J. O., Mossey, M. E., Tyler, P., & Collins, J. C. (2013). An exploratory investigation: Are driving simulators appropriate to teach pre-driving skills to young adults with intellectual disabilities? British Journal of Learning Disabilities, 42, 204-213. https://doi.org/10.1111/bid.12029
- Brooks, J., Kellett, J., Seeanner, J., Jenkins, C., Buchanan, C., Kinsman, A., ... Pierce, S. (2016).
 Training the motor aspects of pre-driving skills of young adults with and without autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(7), 2408–2426.
 https://doi.org/10.1007/s10803-016-2775-8

REFERENCES

- Buza, R. & Chin, J. (2016). Dementia: Predicting driving fitness with St. Louis University mental status exam and trail-making tests. (Unpublished master's thesis). Stanbridge University, Irvine, California.
- Center for Disease Control (2019, November). Drowsy driving: Asleep at the wheel. Retrieved from https://www.cdc.gov/features/dsdrowsydriving/index.html
- Classen, S., Monahan, M., & Wang, Y. (2013). Driving characteristics of teenagers with attention deficit hyperactivity and autism spectrum disorder. American Journal of Occupational Therapy, 67, 664–673. http://doi.org/10.5014/ajot.2013.008821
- Classen, S. & Monahan, M. (2017). Simulated driving performance of teens with ADHD, ASD, and ADHD-ASD. In S. Classen, Driving simulation for assessment, intervention, and training (pp. 157-170). Bethesda, MD: American Occupational Therapy Association, Inc.
- Cox, N. B., Reeve, R. E., Cox, S. M., & Cox, D. J. (2012). Brief report: Driving and young adult with ASD: Parents' experiences. Journal of Autism and Developmental Disorders, 42(10), 2257–2262. https://doi.org/http://dx.doi.org/10.1007/s10803-012-1470-7
- Dickerson, A. E., Reistetter, T., Schold Davis, E., & Monahan, M. (2011). Evaluating driving as a valued instrumental activity of daily living. American Journal of Occupational Therapy, 65, 64–75. https://doi.org/10.5014/ajot.2011.09052
- Fabiano, G. A., Schatz, N. K., Morris, K. L., Willoughby, M. T., Vujnovic, R. K., Hulme, K. F., ... Pelham, W. E. (2016). Efficacy of a family-focused intervention for young drivers with attentiondeficit hyperactivity disorder. Journal of Consulting and Clinical Psychology, 84(12), 1078–1093. https://doi.org/10.1037/ccp0000137
- Gillen, G. (2017). Cognition and occupational therapy In H.M. Pendleton & W. Schultz-Krohn (Eds.). Pedretti's occupational therapy: Practice skills for physical dysfunction, (8th ed.). St. Louis, MO: Mosby.
- Huang, P. (2013) Developmental disabilities and driving.[web log]. Retrieved from: https://injury.research.chop.edu/blog/posts/developmental-disabilities-and-driving#.Xc2ybZNKiu5

REFERENCES

Insurance Institute for Highway Safety. (2018). Fatality facts 2017: Teenagers. Retrieved from https://www.iihs.org/topics/fatality-statistics/detail/teenagers

- Kuypers, L. (2019) The zones of regulation: A concept to foster self-regulation & Emotiona l control. Retrieved from: https://www.zonesofregulation.com/learn-more-about-the-zones.html
- Memisevic, H. & Djordjevic, M. (2018). Visual-motor integration in children with mild intellectual disability: a meta-analysis. Perceptual and motor skills. 125(4), 696-717. DOI: 10.1177/0031512518774137
- Mirman, J. H., Curry, A. E., Winston, F. K., Wang, W., Elliott, M. R., Schultheis, M.T.,... Durbin,
 D. R., (2014) Effect of the teen driving plan on the driving performance of teenagers before
 licensure: A randomized clinical trial. JAMA Pediatrics 168(8):764-771.
 https://doi.org/10.1001/jamapediatrics.2014.252
- Pendleton, H.M., & Schultz-Krohn, W. (2018). The occupational therapy practice framework and the practice of occupational therapy for people with physical disabilities. In H. M. Pendleton & W. Schultz-Krohn (Eds.), Pedretti's occupational therapy practice skills for physical dysfunction (8th ed., pp.1-15). St. Louis, MS: Mosby Elsevier.
- Schmitz, M & Voss, M. (2016). The Occupation of Driving: A Guide for Occupational Therapists Working with Adolescents Who Have ADHD" (2016). Occupational Therapy Capstones. 326. Retrieved from: https://commons.und.edu/cgi/viewcontent.cgi? article=1325&context=ot-grad
- Strzelecki, M. (2011). Green light go: Helping teens with disabilities take the wheel. OT Practice, 16(2), 8–19
- Sucha, M. & Seitl, M., & Lehnerova, J. (2016). The role of personality qualities in driving. Transactions on Transport Sciences, 4. https://doi.org/10.2478/v10158-011-0019-3
- Unsworth, C., Pallant, J., Russell, K., & Odell, M. (2011). OT-DORA: Occupational therapy driver off-road assessment battery. Bethesda, MD: American Occupational Therapy Association.

Warren, M. (2018). Evaluation and treatment of visual deficits after brain injury. In H. M.Pendleton & W. Schultz-Krohn (Eds.), Pedretti's occupational therapy practice skills for physical dysfunction (8th ed., pp. 594-610). St. Louis, MS: Mosby Elsevier.

Walshe, E.A., Winston, F.K., Betancourt, L.M., Khurana, A., Arena, K., & Romer, D. (2019).
Working memory development and motor vehicle crashes in young drivers. JAMA Network Open, 2(9). doi:10.1001/jamanetworkopen.2019.11421

	Participant #1	Participant #2	Participant #3	Participant #4
Comprehensive Executive Fu	unction Inventory (CEFI) parent report measu	re	
Overall Score*	Low Average Percentile: 16	Below Average Percentile: 7	Low Average Percentile: 7	Low Average Percentile: 13
Attention*	Below average	Low average	Below average	Low average
Emotional Regulation	Average	Low average	Low average	Low average
Flexibility	Low average	Average	High average	Low average
Inhibitory Control	Average	Low average	Well below average	Average
Initiation	Low average	Well below average	Average	Below average
Organization	Low average	Below average	Below average	Average
Planning*	Low average	Low average	Low average	Below average
Self-Monitoring	Low average	Below average	Below average	Average
Working Memory*	Low average	Below average	Well below average	Below average
CEFI data notes:	 Attention, planning, and working memory consistent for all 4 participants Overall, EFs very impacted for our participants with ADHD 			ipants
Adolescent/Adult Sensory Pi	· · ·			
Low Registration	Similar to most people	Similar to most people	Much more than most people	Much more than most people
Sensation Seeking	Similar to most	Less than most	Similar to most	Similar to most
Sensory Sensitivity	Similar to most	Similar to most	More than most	More than most
Sensation Avoiding	Similar to most	Less than most	Similar to most	More than most
AASP data notes:	• No clear pattern, mu	st evaluate on an individ	lual basis	
Driving Errors				
Total Errors	3	2	12	3
Road Excursions	2	1	4	0
Collisions	1	1	5	0
Center Line Crossings (% of drive time)	0%	0%	11%	6%
Speeding (% of drive time)	0%	0%	5.5%	26%
Driving Errors data notes:	• May be driving over amount of experienc	er trials (excl. P4's speed ly cautious because lack e when novice drivers s	of experience; problem	
Interest vs. Confidence in Dr				
Interest	3	3	3	5
Confidence	2	0	0	3
Difference	1	3	3	2
INT vs. CON data notes:	All participants were confidence is usually	e more interested than co hallmark of teens	onfident, which may be	unusual as over-

WROTSS 2020 – Driving, Teens, and ADHD: Between Group Data Comparison Table

	Well below	Below	Low average	Average	High	Superior	Very
	average	average			average		superior
Percentile	0-2	2-8	9-24	25-74	75-90	91-97	98-100

Normative sample data ranges for the CEFI- parent report.

<u>WROTSS 2020 – Teens, Driving, and ADHD Case Study Data Sheets</u> Participant #1

16 y/o female	ADHD, static encephalopathy	Stimulant medications	Pre-driver
---------------	-----------------------------	-----------------------	------------

Simulator scores:

Total errors: 3

Types of errors: 2 road excursions, 1 collision, 0 center line crossing, 0 driving across center line or speeding

Observations: Very cautious. Errors decreased over trials.

Low registration	Similar to most people	
Sensory seeking	Similar to most people	
Sensory sensitivity	Similar to most people	
Sensation avoiding	Similar to most people	

Adolescent/Adult Sensory Profile (AASP) scores:

Comprehensive Executive Function Inventory (CEFI) scores:

Subscale	Percentile rank	Classification		
Attention	8	Below average		
Emotional regulation	27	Average		
Flexibility	13	Low average		
Inhibitory control	42	Average		
Initiation	14	Low average		
Organization	19	Low average		
Planning	19	Low average		
Self-monitoring	12	Low average		
Working memory	12	Low average		
Overall	16	Low average		

- *
- *
- *

Participant #2

15 y/o female ADHD, depression	Stimulant and anti-depressant medications	Pre-driver	
--------------------------------	---	------------	--

Simulator scores:

Total errors: 2

Types of errors: 1 road excursion, 1 collision, 0 center line crossing, 0 driving across center line or speeding

Observations: Very cautious. Errors decreased over trials.

Addiescent/Adult Sensory Prome (AASP) scores:			
Low registration	Similar to most people		
Sensory seeking	Less than most people		
Sensory sensitivity	Similar to most people		
Sensation avoiding	More than most people		

Adolescent/Adult Sensory Profile (AASP) scores:

Comprehensive Executive Function Inventory (CEFI) scores:

Subscale	Percentile rank	Classification
Attention	9	Low average
Emotional regulation	10	Low average
Flexibility	34	Average
Inhibitory control	19	Low average
Initiation	1	Well below average
Organization	4	Below average
Planning	9	Low average
Self-monitoring	8	Below average
Working memory	8	Below average
Overall	7	Below average

- *
- *
- .
- *
- *

Participant #3

14 y/o femaleADHDNo medicationPre-driver	
--	--

Simulator scores:

Total errors: 12

Types of errors: 4 road excursions, 5 collisions, 11% time driving across the center line, 5.5% time speeding.

Observations: Errors decreased over trials, was very talkative and easily distractible

Addiescent/Addit Sensory Frome (AASP) scores.			
Low registration	Much more than most people		
Sensory seeking	Similar to most people		
Sensory sensitivity	More than most people		
Sensation avoiding	Similar to most people		

Adolescent/Adult Sensory Profile (AASP) scores:

Comprehensive Executive Function Inventory (CEFI) scores:

Subscale	Percentile rank	Classification
Attention	6	Below average
Emotional regulation	12	Low average
Flexibility	81	High average
Inhibitory control	1	Well below average
Initiation	45	Average
Organization	6	Below average
Planning	18	Low average
Self-monitoring	7	Below average
Working memory	1	Well below average
Overall	9	Low average

- *
- *
- *
- *

Participant #4

14 v/o female	ADHD	No medication	Pre-driver
14 y/0 lemale	ADIID	No medication	FIE-UIIVEI

Simulator scores:

Total errors: 3

Types of errors: 0 road excursions, 0 collisions, 6% time driving across center line, 26% time speeding

Observations: Percent of time speeding increased from 0 to 54% over 3 trials. Center line crossing decreased from 19% to 0 over 3 trials. Errors decreased over trials (except speed).

Low registration	Much more than most people	
Sensory seeking	Similar to most people	
Sensory sensitivity	More than most people	
Sensation avoiding	More than most people	

Adolescent/Adult Sensory Profile (AASP) scores:

Comprehensive Executive Function Inventory (CEFI) scores:

Subscale	Percentile rank	Classification
Attention	14	Low average
Emotional regulation	16	Low average
Flexibility	18	Low average
Inhibitory control	25	Average
Initiation	7	Below average
Organization	34	Average
Planning	8	Below average
Self-monitoring	25	Average
Working memory	8	Below average
Overall	13	Low average

- *
- *
- *
- *

Activity

Note which OTPF terms that you believe might be required functions for the activity of driving.

Neuromusculoskeletal

Muscle Functions

- Joint mobility
- Joint stability

- Muscle Power
- Muscle tone
- Muscle endurance

Movement Functions

- Motor Reflexes
- Involuntary movement reactions
- Control of voluntary movement
- Gait patterns

Activity

Note which OTPF terms that you believe might be required functions for the activity of driving.

Specific Mental Functions

- Higher level Cognitive
- Attention
- Memory
- \circ Perception
- Thought
- Sequencing Complex movements
- Emotional
- Experience of self & time

Global Mental Functions

- Consciousness
- Orientation
- Temperament & personality
- Energy & drive
- Sleep

Sensory Functions

- Visual
- Hearing
- Vestibular
- Proprioceptive
- \circ Touch
- o Smell
- Pain
- Temperature & Pressure
- Taste